

Figure S1. Chemical structures of all the small molecules within the EGFR protein crystal complexes.

Figure S2. All the protein-ligand binding modes within 42 EGFR protein crystal complexes.

Figure S3. Sequence alignment within 42 EGFR protein crystal complexes.

Figure S4. Sequence alignment of 85 conserved residues in the binding pockets of 42 EGFR protein crystal complexes.

Chemical structure	Fragment	Source	Pocket	EI E ^a
	name	structure	position	TLL
	1-1	3LZB	BP-I, II, III, IV	3.27
	1-2-1	2JIV [*]	BP-I, II, III, IV	3.7
	1-2-2	3W2Q*	K, BP-II	3.7
\sim	1-3-1	1XKK	BP-I, II, III, IV	4.86
	1-3-2	2R4B	BP-I, II, III, IV	3.7
	1-3-3	3BBT	BP-I, II, III, IV	3.34
N NH	1-4	3IKA*	A, R	2.92
N N	1-5-1	3LZB	А	2.62
	1-5-2	4LI5	A, R	3.43
Ĥ	1-5-3	3IKA*	A, R	3.65
	1-6-1	3W2O*	BP-I, II	3.21
	1-6-2	3W2P*	BP-I, II	2.98
	1-6-3	3W2R*	BP-I, II	4.33
↓	1-6-4	3W32	BP-I, II	4.87
	1-6-5	3W33	BP-I, II	5.59
	1-6-6	3POZ	BP-I, II	4.83
	1-6-7	3RCD	BP-I, II	4.91
	1-7-1	3W32	A, K	4.36

Table S1. The detailed information of 2D fragments decomposed from the 42HER protein crystal complexes.

HNNN	1-7-2	3W33	A, K	5.01
HN	1-8	4LL0*	А, К	4.49
	1-9-1	2J6M	Α, Κ	3.04
	1-9-2	2JIU*	A, K	2.88
	1-9-3	2ITP	А, К	3.03
HN	1-9-4	2ITT	А, К	3.35
0. N	1-10-1	4JQ7	А, К	2.95
	1-10-2	4JQ8	А, К	4.21
HN	1-10-3	4JR3	А, К	3.65
	1-10-4	4JRV	А, К	3.67
	1-11-1	1XKK	A, K	4.98
	1-11-2	4G5P*	А, К	7.34
	1-11-3	4HJO	А, К	5.74
	1-11-4	4I22 [*]	А, К	3.79
	1-11-5	4I23	А, К	5.69
HN	1-11-6	4I24	А, К	5.18
	1-11-7	4LRM	А, К	7.38
	1-11-8	2J5E	А, К	7.38
	1-11-9	3BBT	А, К	3.42
	1-11-10	4G5J	А, К	8.49
	1-11-11	1M17	A, K	5.74
	1-11-12	3UG2*	A, K	3.79
	1-11-13	2ITO	A, K	4.61
	1-11-14	2ITY	А, К	4.85

	1-11-15	2ITZ	A, K	5.72
N N N N N	1-12-1	2ITY	A, K	4.07
	1-12-2	3BBT	A, K	2.87
	1-13-1	2 JIV *	A, K	5.36
HIN	1-13-2	3W2Q*	A, K	5.36
	1-13-3	40TW	А, К	-
HN	1-14	2R4B	A, K	3.49
HN HN N H	1-15	3W33	A, K	5.01
	1-16-1	2RGP	A, BP-I, II	2.87
	1-16-2	3BEL	A, BP-I, II	3.83
	1-17-1	3W2O*	A, K	2.22
	1-17-2	3W2P*	A, K	2.07

	1-17-3	3W2R*	A, K	3
HN	1-17-4	3POZ	A, K	3.35
	1-17-5	3RCD	А, К	3.4
	1-18-1	2RGP	BP-I, II, III, IV	5.78
N	1-18-2	3BEL	BP-I, II, III, IV	7.73
	1-19-1	2J6M	A, R	2.16
	1-19-2	2JIU	A, R	2.9
	1-19-3	2ITP	A, R	3.05
	1-19-4	2ITT	A, R	3.37
	1-20	1XKK	A, R	2.97
	1-21-1	4JQ7	A, R	2.46
	1-21-2	4JQ8	A, R	3.51
N	1-21-3	4JQ3	A, R	3.05
N~ 0	1-21-4	4JRV	A, R	3.07
	1-22-1	4JQ7	A, R	2.96
N N	1-22-2	4JQ8	A, R	4.23
	1-22-3	4JQ3	A, R	3.67
	1-22-4	4JRV	A, R	3.69

	1-23	4L15	А, К	2.87
N S N N	1-24	3LZB	A, K	1.41
	1-25	3LZB	А, К	3.08

*EGFR Protein containing T790M mutation. ^aFragment lipophilicity efficiency, FLE = LipE*AlogP_(fragment).

CDOC	3W2R (L858R/T790M)		3W33 (Wild Type)	
	compou	CDOCKER_Interaction_	compou	CDOCKER_Interaction_
KE	nds	Energy (kcal/mol)	nds	Energy (kcal/mol)
	A-2	-57.896	A-10	-70.2457
T. I	A-3	-37.3167	A-2	-70.9749
Ten top	B-3	-25.4889	A-5	-66.752
molecul			A-8	-68.1622
es			A-9	-75.3367
ranked	No		B-10	-66.7921
Dy de alvin a	refined	_c	B-3	-66.5094
docking	pose		W19	-66.3401
scores			A-4	-66.245
			B-2	-66.177
Clidab	3	3W2R (L858R/T790M)		3W33 (Wild Type)
(sp)	compou nds	Glide score (kcal/mol)	compou nds	Glide score (kcal/mol)
Ten top	B-1	-14.531775	A-10	-13.534213
molecul	A-10	-12.001108	A-3	-13.310207

Table S2. The obtained results of docking-based virtual screening.

es	A-2	-11.442017	A-1	-12.569783	
ranked	A-3	-11.146296	A-2	-11.641528	
by	A-8	-9.333602	A-8	-11.011472	
docking	A-5	-8.991333	A-7	-10.336488	
scores	A-9	-8.87509	A-4	-9.825871	
	A-4	-8.35916	A-5	-9.816869	
	A-6	-8.250604	A-9	-8.633209	
	B-2	-8.143607	A-6	-7.025011	
Clidob	3W2R (L858R/T790M)		3W33 (Wild Type)		
(xp)	compou nds	Glide score (kcal/mol)	compou nds	Glide score (kcal/mol)	
	B-1	-13.532223	A-2	-13.178289	
π. (A-10	-12.889075	A-10	-12.988253	
Ten top	W2R	-12.821827	W19	-12.057136	
molecul	A-3	-12.009716	A-5	-10.109834	
es	A-9	-11.92504	A-3	-10.051887	
hy	A-1	-11.745627	A-9	-10.00585	
docking	A-2	-11.528264	A-7	-9.949243	
scores	B-4	-10.28542	A-8	-9.232259	
500105	B-3	-8.963894	A-1	-8.606092	
	A-7	-8.867099	A-4	-8.171397	

^a Performed on the Discovery studio 3.5 platform. ^b Performed on the Schrodinger 2012 suite; sp, standard precision; xp, extra precision. ^c No data.